Protein folding
Basic protein structure

Amino acid (Phenylalanine)

Polypeptide

‘Surface’ representation

‘Cartoon’ representation

beta-sheet

alpha-helix
What happens if proteins misfold?

• Mad Cow disease
 – In a bovine epidemic that struck the UK in 1986, 170,000 cows appeared to be mad: they drooled and staggered, were extremely nervous, or bizarrely aggressive. They all died. As the brains of the dead “mad” cows resembled a sponge, the disease was called bovine spongiform encephalopathy, or BSE.

Prions are proteins that are found in the nerve cells of all mammals. Many abnormally-shaped prions are found in the brains of BSE-infected cows.

http://www.uvm.edu/~wschaeff/101PrionsMadCow.html
What happens if proteins misfold?

• Alzheimer's disease (AD)
 – Worsens as it progresses, eventually leading to death; currently no cure.
 – The Aβ peptides are believed to be involved in AD: they can oligomerize and be released into the interstitial fluid of brain, where soluble oligomers may diffuse into synaptic clefts and interfere with synaptic function by unknown mechanisms.

http://www.nature.com/ncb/journal/v6/n11/full/ncb1104-1054.html
Protein Folding: Three Questions

“The protein-folding problem came to be three main questions:

1. The physical folding code: How is the 3D native structure of a protein determined by the physicochemical properties that are encoded in its 1D amino-acid sequence? (Anfisen’s dogma)

2. The folding mechanism: A polypeptide chain has an almost unfathomable number of possible conformations. How can proteins fold so fast?

3. Predicting protein structures using computers: Can we devise a computer algorithm to predict a protein’s native structure from its amino acid sequence?

• The Protein-Folding Problem, 50 Years On. Ken A. Dill and Justin L. MacCallum Science 338, 1042 (2012);
Q1 The Physical Folding Code

Forces Governing Protein Folding:
1. Hydrogen bonds
2. van der Waals interactions
3. Backbone angle preferences
4. Electrostatic interactions.
5. Hydrophobic interactions.
6. Chain entropy.
Q2 The Folding Mechanism

• The Levinthal paradox
 – The conformation of a protein is largely determined by its backbone angles: ϕ and ψ.

 – If we only focus on ψ, and assume that it can adopt one of three possible values. How long does it take for a protein with 101 amino acids to fold?

 • Possible conformations: $3^{100} \approx 5 \times 10^{47}$.
Given enough time, a monkey bashing away at random on a typewriter could produce all the works of Shakespeare.

“Let us limit the task facing our monkey somewhat. Suppose that he has to produce, not the complete works of Shakespeare but just the short sentence 'Methinks it is like a weasel', and we shall make it relatively easy by giving him a typewriter with a restricted keyboard, one with just the 26 (capital) letters, and a space bar. How long will he take to write this one little sentence?”

Richard Dawkins

\[27^{28} = 10^{40}; \text{1 letter/second} \Rightarrow 10^{32} \text{ years!} \]

Dawkins’ resolved this by allowing for cumulative selection
Solution

• Dawkins’ weasel
 – Restrictions for the monkey:
 • not allowed to change those letters that are already correctly in place. How does it know what the target is?

• Levinthal’s paradox
 – Consider amino acid interactions: native-fold interactions maintained as they form

This solution only offers a mathematical explanation of why protein folding is possible; it doesn’t actually solve the problem.
Protein Folding Funnel

- Protein folding landscapes are narrower at the bottom; there are few low-energy, native-like conformations and many more open unfolded structures.

- A protein folds by taking random steps that are mostly incrementally downhill in energy.

- Different molecules of the same protein sequence may each follow microscopically different routes to the same native structure.

- A protein appears to first develop local structures in the chain (such as helices and turns) followed by growth into more global structures. Even though the folding process is blind, nevertheless it can be fast because native states can be reached by this divide-and-conquer, local-to-global process.

A 1D “funnel” - folding of deca-alanine helix

10-Ala helix (in vacuum)
end-to-end distance (ξ)
a common RC

14 Å

32 Å

done in vacuum

Going to a 2D description

Solution: add a 2nd RC for alpha helicity (α), in addition to ξ

In vacuum, alpha helical content and end-to-end distance are practically 1-1.

In water, a number of compact, low-lying states appear that “contaminate” the 1D PMF (i.e., *are poorly sampled*).
Free energy surface

calculated free energy shows minima in two different states
Lattice models for protein folding

Only permit folding on a lattice (unoccupied sites are solvent)

HP model: assigns residues into Hydrophobic (H) or Polar (P) classes,

Assumes hydrophobic collapse dominates folding free energy

Assign an energy penalty for any H-P or H-S contacts

dark - H; light - P

Not a good protein, all states have the same energy!

Here, a lowest energy minimum state exists

![Diagram of lattice models with HP and PH sequences](image-url)
Lattice models for protein folding

\[p_{\text{fold}} = \frac{e^{-2\beta\varepsilon}}{e^{-2\beta\varepsilon} + 2e^{-4\beta\varepsilon}} \]
Gō (lattice) model

In its simplest form, developed in 1975, assigns a favorable energy ε for native contacts and 0 for non-native contacts.

Requires knowledge of final structure, but permits one to examine folding kinetics.

Using Monte Carlo simulations, can enumerate different folding pathways.

Examination of simulation results allows identification of common intermediate states.

Still used in various forms today!!!
Complications to the funnel

true free-energy landscape is much more complex than a single funnel

proteins may sample a number of intermediates without native-like structure on the folding pathway

Complications to the funnel

many disease states on the right-hand side - how to avoid them?

proteins already start folding during synthesis!

additionally cells can use chaperones to prevent aggregation

Complications to the funnel
many *in vivo* factors alter the folding process, e.g.,

macromolecular crowding

Q3 Protein Structure Prediction

• We know 1000x more sequences than structures.
 – There is considerable value in methods that could accurately predict structures from sequences.

 – Held every second summer, CASP is a community-wide blind competition in which typically more than 100 different “target sequences” (of proteins whose structures are known but not yet publicly available) are made available to a community that numbers more than 100 research groups around the world.
The Progress of CASP

- Currently, all successful structure-prediction algorithms are based on assuming that similar sequences lead to similar structures.

- PDB: 100,000 structures but mostly redundant (4000 structural families and 1200 folds).
Remaining Challenges in CASP

• When there is no protein in the PDB with a sequence resembling the target’s, accurately predicting the structure of the target is much more difficult (free modeling, or *ab initio*, *de novo* prediction).

• Substantial improvements have been observed for free-modeling targets shorter than 100 amino acids, although no single group yet consistently produces accurate models.

• Winner in latest CASP12: Rosetta+MD from David Baker lab

http://robetta.bakerlab.org/

structure prediction webserver
MD Simulation of Protein Folding

• Challenges
 – Timescale
 • Specialized supercomputers
 – Force field
 • Improvement made to classical MD FF:
 – AMBER; CHARMM; GROMOS, etc.
 • New FF with polarizability is increasingly used.
MD Simulations of Protein Folding

Using Anton, Shaw and co-workers observed reversible folding and unfolding in more than 400 events across 12 small proteins to structures within 4.5 Å of the experimental structure.

Beyond prediction: designer proteins

PRINCIPLES FOR DESIGNING IDEAL PROTEIN STRUCTURES

Simple rules create idealized structures, verified experimentally

Beyond structure, engineer protein for specific functions

http://www.nature.com/nature/journal/vaop/ncurrent/full/nature12443.html