What is the GRE?

- The Graduate Record Examination (GRE) is a set of standardized tests often used for entry to graduate school.
- The **General** GRE test, which is required by most schools, has three parts, quantitative (*math*), verbal (*words and stuff*), and analytical writing (*can you combine words into sentences*).
- Subject GRE tests are used for specific fields (*Biology, Chemistry, Literature, Math, Physics, Psychology*) and are used more or less often, depending on the area.
Why GRE?

GREs don't predict grad school success. What does?

By Beryl Lief Benderly | Jun. 7, 2017, 8:30 AM

Student performance measures that don't perform

By Maggie Kuo | Jan. 11, 2017, 5:00 PM

The Problem With the GRE

The exam “is a proxy for asking ‘Are you rich?’ ‘Are you white?’ ‘Are you male?’”

VICTORIA CLAYTON MARCH 1, 2016
Why GRE?

GREExit snapshot

Percent of programs at 50 top-ranked U.S. research universities that didn’t require GRE general scores in 2018. (Programs in some disciplines weren’t offered at all universities.)

Molecular biology: 44%
Neuroscience: 35
Ecology: 29
Chemistry: 8
Computer science: 8
Psychology: 4
Physics: 2
Geology: 0

Change can be slow!

https://www.sciencemag.org/careers/2019/05/wave-graduate-programs-drop-gre-application-requirement
What is the Physics GRE?

• The Physics GRE is 170 minutes and has 100 multiple-choice (five-option) questions
• It spans practically all of physics with the following breakdown:
 • Classical mechanics (20%)
 • Electromagnetism (18%)
 • Optics and wave phenomena (9%)
 • Thermodynamics and statistical mechanics (10%)
 • Quantum mechanics (12%)
 • Atomic physics (10%)
 • Special relativity (6%)
 • Laboratory methods (6%)
 • Specialized topics (9%)

https://www.ets.org/gre/subject/about/content/physics
What is the Physics GRE?

1. **CLASSICAL MECHANICS — 20%**
 (such as kinematics, Newton’s laws, work and energy, oscillatory motion, rotational motion about a fixed axis, dynamics of systems of particles, central forces and celestial mechanics, three-dimensional particle dynamics, Lagrangian and Hamiltonian formalism, noninertial reference frames, elementary topics in fluid dynamics)

2. **ELECTROMAGNETISM — 18%**
 (such as electrostatics, currents and DC circuits, magnetic fields in free space, Lorentz force, induction, Maxwell’s equations and their applications, electromagnetic waves, AC circuits, magnetic and electric fields in matter)

3. **OPTICS AND WAVE PHENOMENA — 9%**
 (such as wave properties, superposition, interference, diffraction, geometrical optics, polarization, Doppler effect)

4. **THERMODYNAMICS AND STATISTICAL MECHANICS — 10%**
 (such as the laws of thermodynamics, thermodynamic processes, equations of state, ideal gases, kinetic theory, ensembles, statistical concepts and calculation of thermodynamic quantities, thermal expansion and heat transfer)

5. **QUANTUM MECHANICS — 12%**
 (such as fundamental concepts, solutions of the Schrödinger equation (including square wells, harmonic oscillators, and hydrogenic atoms), spin, angular momentum, wave function symmetry, elementary perturbation theory)

6. **ATOMIC PHYSICS — 10%**
 (such as properties of electrons, Bohr model, energy quantization, atomic structure, atomic spectra, selection rules, black-body radiation, x-rays, atoms in electric and magnetic fields)

7. **SPECIAL RELATIVITY — 6%**
 (such as introductory concepts, time dilation, length contraction, simultaneity, energy and momentum, four-vectors and Lorentz transformation, velocity addition)

8. **LABORATORY METHODS — 6%**
 (such as data and error analysis, electronics, instrumentation, radiation detection, counting statistics, interaction of charged particles with matter, lasers and optical interferometers, dimensional analysis, fundamental applications of probability and statistics)

9. **SPECIALIZED TOPICS — 9%**
 Nuclear and Particle physics (e.g., nuclear properties, radioactive decay, fission and fusion, reactions, fundamental properties of elementary particles), Condensed Matter (e.g., crystal structure, x-ray diffraction, thermal properties, electron theory of metals, semiconductors, superconductors), Miscellaneous (e.g., astrophysics, mathematical methods, computer applications)

In each category, the subtopics are listed roughly in order of decreasing importance for inclusion in the test.
What is the Physics GRE?

- It’s offered only three times per year: September, October, and April
- You register at least a month in advance, but don’t wait until the deadline as testing centers fill up! (some student have had to travel to, e.g., Athens because Atlanta test centers were full)
- Scores take another month to become available
- Many students register for both September and October test dates to increase their chances of getting a good score
- Each test costs $150, which includes sending the scores to four schools
- Sending to additional schools costs $27 each
- The ScoreSelect option allows you to send only your best score to a school (although some schools may ask for all scores anyway)
Typical physics Ph.D. admissions criteria limit access to underrepresented groups but fail to predict doctoral completion.

“...despite a large sample size and wide dynamic range, we do not find a statistically significant relationship between GRE Physics (GRE-P) Subject Test scores and Ph.D. completion.”
Why physics GRE?

Only 1/3 of schools require it and 1/4 recommend it

Nearly half of schools don’t want/need it

https://docs.google.com/spreadsheets/d/19UhYToXOPZkZ3CM469ru3Uwk4584CmzZyAVVwQJJcyc/edit
Scores

• Every Subject Test yields a total score on a 200 to 990 score scale, in 10-point increments.

• Scores get assigned a percentile representing what fraction of people for which you scored higher (this will vary a bit from year to year)

• For 20,700 people who took the Physics GRE between July 2015 and June 2018, the average score was 712 +/- 160

Scores

- The number of correct answers will determine your score for a given test

- Incorrect answers are **NOT** penalized (this wasn’t always the case - beware outdated advice!)

- For the 2013 practice exam, getting 84/100 was good enough for a perfect score (990)

- getting 50/100 correct on this test is a 650 - a respectable score (but not competitive for top schools)
Scores

• While some schools publish minimum scores, they aren’t always strictly enforced (GT did not enforce its own minimum)
• To get an idea, you can look at the physicsgre.com forum, e.g.: https://physicsgre.com/viewtopic.php?f=3&t=181795
Resources for preparation

links to various content on the course website, including old tests for practice with solutions

Important Dates:
Spring reg. deadline: Fri.
March 5, 2021
Late deadline: Fri. March 12, 2021
Spring exam: Sat. April 10, 2021

How to ace the GRE
Web Forum
Practice Exams
Solutions (most)
Conquering the Physics GRE (book)
Ohio State problem sets and solutions
List of schools and Physics GRE requirements

Strategies

• READ all the sources I have provided/linked to
• Do ALL 500 practice exam problems AND understand them
 • Note: older practice exams are harder than current ones!
• Time is short (~100 seconds/question)! Look for/learn shortcuts for solving problems
• If you have taken sufficient courses, consider taking the April test - then you can decide if you still want to take a second test in October
• Next class, you will take a sample (1/3) Physics GRE